





# Dinitramide anion as a reagent for the controlled replacement of fluorine by oxygen in halogen fluorides

K.O. Christe a,b,\*, W.W. Wilson a

\*Raytheon STX, Propulsion Directorate, Air Force Research Laboratory, Edwards Air Force Base, CA 93524, USA \*Loker Hydrocarbon Research Institute, University of Southern California, University Park, Los Angeles, CA 90089-1661, USA

Received 8 August 1996; accepted 22 October 1997

#### **Abstract**

The reactions of  $KN(NO_2)_2$  with  $BrF_5$ ,  $ClF_5$  and  $IF_7$  were investigated. It is shown that the  $N(NO_2)_2$ —anion is superior to  $NO_3$ —as a reagent for the controlled, stepwise replacement of two fluorine ligands by a doubly bonded oxygen atom. Thus,  $KN(NO_2)_2$  readily reacts with  $BrF_5$  at  $-45^{\circ}C$  to give  $KBrOF_4$ ,  $N_2O$  and  $FNO_2$  in quantitative yield. With  $ClF_5$  at  $-13^{\circ}C$ , an equimolar mixture of  $KClOF_4$  and  $KClF_4$  was obtained. The formation of  $KClOF_4$  is remarkable because with most other fluorine–oxygen exchange reagents, such as  $NO_3$ —, the exchange process cannot be arrested at the  $ClOF_4$ —stage and yields  $FClO_2$  as the only product. In the case of  $IF_7$ , deoxygenation of the desired  $IOF_6$ —product occurred resulting instead in the formation of  $KIF_6$  which, in the presence of excess  $IF_7$ , formed the novel  $KIF_6 \cdot 2IF_7$  adduct. 1998 Elsevier Science S.A. All rights reserved.

Keywords: Fluorine-oxygen exchange; Dinitramide anion; Halogen fluorides: Bromine pentafluoride: Chlorine pentafluoride: lodine heptafluoride

## 1. Introduction

Fluorine-oxygen exchange reactions are of importance in synthetic chemistry. Whereas most of the known methods are concerned with the replacement of a doubly bonded oxygen atom by two fluorine atoms, only little systematic work had been done on the reverse problem, i.e., the controlled replacement of fluorine by oxygen. In a recent paper, the principal methods for fluorine-oxygen exchange have been reviewed, and a new method, based on the use of the NO<sub>3</sub> anion, has been described [1]. Although the NO<sub>3</sub><sup>-</sup> anion was found to be a highly effective and generally useful reagent, it was not capable of achieving a controlled stepwise fluorine-oxygen exchange in either IF<sub>7</sub> or ClF<sub>5</sub>. Since recent work in our laboratory on the dinitramide anion [2] had indicated that the  $N(NO_2)$ , anion is more reactive than the  $NO_3$  ion, it was of interest to examine its potential as a reagent for fluorine-oxygen exchange and, in particular, for the two problem cases, ClF<sub>5</sub> and IF<sub>7</sub>.

## 2. Experimental details

Literature methods were used for the syntheses of KN(NO<sub>2</sub>)<sub>2</sub> [2], ClF<sub>5</sub> [3], IF<sub>7</sub> [4] and KIF<sub>6</sub> [5]. The BrF<sub>5</sub>

(Matheson) was treated with 35 atm of F<sub>2</sub> at 100°C for 24 h and then purified by fractional condensation through traps kept at  $-64^{\circ}$  and  $-95^{\circ}$ C, with the material retained at - 95°C being used. Volatile materials were handled in a wellpassivated (with ClF<sub>3</sub>) stainless-steel Teflon-FEP vacuum line [6] and solids in the dry nitrogen atmosphere of a glove box. Raman spectra were recorded on either a Cary Model 83 or a Spex Model 1403 spectrophotometer using the 488nm exciting line of an Ar ion or the 647.1-nm line of a Kr ion laser, respectively. Baked-out Pyrex melting point capillaries were used as sample containers. Infrared spectra were recorded on a Perkin-Elmer Model 283 spectrophotometer. For gases, a 5-cm path length Teflon cell equipped with AgCl windows was used. For solids, the finely powdered samples were sandwiched between two thin AgCl or AgBr disks and pressed together in a Wilks minipress inside the drybox.

## 2.1. Reaction of $KN(NO_2)_2$ with $BrF_5$

Inside the drybox,  $KN(NO_2)_2$  (1.00 mmol) was placed into a pre-passivated Teflon–FEP ampoule which was closed by a stainless-steel valve. On the vacuum line,  $BrF_5$  (14.46 mmol) was added at  $-196^{\circ}C$ . The resulting mixture was warmed to  $-45^{\circ}C$  for 30 min and then cooled back to  $-196^{\circ}C$ . All material volatile at room temperature was pumped off and fractionated through a series of cold traps

<sup>\*</sup> Corresponding author.

kept at -45, -95 and  $-196^{\circ}$ C. The  $-45^{\circ}$ C trap contained nothing, while the  $-95^{\circ}$ C trap contained unreacted BrF<sub>5</sub> (13.40 mmol), and the  $-196^{\circ}$ C trap had an equimolar mixture (1.98 mmol) of FNO<sub>2</sub> and N<sub>2</sub>O. The white solid residue (214 mg, weight calculated for 1.00 mmol of KBrOF<sub>4</sub> = 211.0 mg), left behind in the Teflon ampoule, was identified by infrared and Raman spectroscopy as pure KBrOF<sub>4</sub>.

# 2.2. Reaction of KN(NO<sub>2</sub>)<sub>2</sub> with ClF<sub>5</sub>

A mixture of  $KN(NO_2)_2$  (1.01 mmol) and  $ClF_5$  (17.05 mmol) was prepared as described above and allowed to warm from  $-196^{\circ}$ C to  $-13^{\circ}$ C. It was kept at this temperature for 3 h with agitation, before being cooled again to -196°C. While warming up to room temperature, all volatile material was fractionated in a dynamic vacuum through two cold traps kept at -126°C and -196°C. The -126°C trap contained most of the unreacted ClF<sub>5</sub> (15.86 mmol), while the  $-196^{\circ}$ C one contained a mixture (2.17 mmol) of FNO<sub>2</sub>, CIF<sub>5</sub>, N<sub>2</sub>O<sub>5</sub> FNO and a trace of FClO<sub>2</sub>. The FNO is believed to result from the fluorination of some N<sub>2</sub>O which, therefore, was present in an amount smaller than that of FNO<sub>2</sub>. The white solid residue (140 mg, weight calculated for 1.01 mmol of an equimolar mixture of  $KClF_4$  and  $KClOF_4 = 160 \text{ mg}$ ) was identified by its infrared and Raman spectra as an approximately equimolar mixture of KClF<sub>4</sub> and KClOF<sub>4</sub>.

## 2.3. Reaction of $KN(NO_2)_2$ with $IF_7$

A mixture of  $KN(NO_2)_2$  (1.02 mmol) and  $IF_7$  (16.61 mmol) was prepared as described above and allowed to warm from  $-196^{\circ}C$  to room temperature. At the beginning the white, solid  $KN(NO_2)_2$  floated on top of the liquid  $IF_7$ , but after 1 h at room temperature and frequent agitation the solid sank to the bottom. The Teflon–FEP ampoule was re-cooled to  $-196^{\circ}C$  and the material volatile at room temperature was fractionated on warm up in a dynamic vacuum through traps kept at -126 and  $-196^{\circ}C$ . The  $-126^{\circ}C$  trap contained unreacted  $IF_7$  (15.17 mmol) and the  $-196^{\circ}C$  trap had a mixture of  $N_2O$  and  $FNO_2$  (1.46 mmol). The white solid residue (461 mg, weight calculated for 0.525 mmol of  $KNO_3$  and 0.495 mmol of  $KIF_6 \cdot 2IF_7 = 457$  mg) was shown from its vibrational spectra and their comparison with those of known samples to be a mixture of  $KIF_6 \cdot 2IF_7$  and  $KNO_3$ .

## 3. Results and discussion

Bromine pentafluoride readily reacted with  $KN(NO_2)_2$  according to the equation:

$$BrF_5 + KN(NO_2)_2 \rightarrow KBrOF_4 + FNO_2 + N_2O$$

After 30 min at  $-45^{\circ}$ C, the yield of KBrOF<sub>4</sub> was quantitative and no side reactions were observed. Therefore, no other reaction conditions were explored. Clearly, KN(NO<sub>2</sub>)<sub>2</sub> is

more reactive than KNO<sub>3</sub> which under similar conditions (-31°C, 1 h reaction time) yielded only 34.3% of KBrOF<sub>4</sub>. To achieve quantitative yields of KBrOF<sub>4</sub> with KNO<sub>3</sub>, either a temperature of about 100°C and reaction times of about 20 h or continuous ball-milling for 20 h at 25°C were required [7]. For the KN(NO<sub>2</sub>)<sub>2</sub>/BrF<sub>5</sub> reaction, the following mechanism is proposed in which an oxygen atom of one nitro group attacks the bromine atom of BrF<sub>5</sub> whose free valence electron pair can become temporarily sterically inactive by occupation of an s-orbital as for example, in BrF<sub>6</sub> [8,9]. A fluorine ligand of BrF<sub>5</sub> is then transferred to the nitrogen atom of the second nitro group, followed by N<sub>2</sub>O elimination giving BrOF<sub>4</sub> and FNO<sub>2</sub>.

$$KN(NO_2)_2 + BrF_5 \longrightarrow K^+ \begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

The formation of the postulated intermediate anion which requires a twisting of the  $NO_2$  groups in the  $N(NO_2)_2^-$  anion is facilitated by the dihedral angle and the very low (< 3 kcal mol<sup>-1</sup>) rotational barrier of these groups [2].

The reaction of CIF<sub>5</sub> with KN(NO<sub>2</sub>)<sub>2</sub> was not as clean-cut as that of BrF<sub>5</sub> (see above). In addition to the fluorine-oxygen exchange reaction,

$$ClF_5 + KN(NO_2)_2 \rightarrow KClOF_4 + FNO_2 + N_2O$$

deoxygenation of ClOF<sub>4</sub> to ClF<sub>4</sub> also occurred producing an approximately equimolar amount of KClF<sub>4</sub>. Surprisingly, only a small amount of FCIO2 was formed due to a double oxygen-fluorine exchange. In the case of the corresponding NO<sub>3</sub><sup>-</sup> reaction [10] and also during the hydrolysis of ClF<sub>5</sub> [11], FClO<sub>2</sub> was always obtained as the main product without any evidence for ClOF<sub>3</sub> or ClOF<sub>4</sub><sup>-</sup> formation. The exclusive formation of FClO<sub>2</sub> in the NO<sub>3</sub> or hydrolysis reactions was ascribed [1,12] to kinetic effects, i.e., the much higher reactivity of CIOF<sub>3</sub> compared to that of CIF<sub>5</sub>. This extraordinary reactivity of ClOF<sub>3</sub> has also rendered the synthesis of ClOF<sub>3</sub> difficult and usually involves either the low-temperature fluorination of shock sensitive materials, such as chlorine oxides or chlorine nitrate, or UV-photolysis [12]. Therefore, a method involving a controllable stepwise fluorine-oxygen exchange in the readily accessible [3] ClF<sub>5</sub> is highly desirable. There has been only one other report on a successful stepwise fluorine-oxygen exchange in ClF<sub>5</sub>. In a paper presented at the 10th International Symposium on Fluorine Chemistry [13], it was reported that CIF<sub>5</sub>, although its hydrolysis yielded only FClO<sub>2</sub>, reacts with OH<sub>3</sub><sup>+</sup> BF<sub>4</sub><sup>-</sup> in HF solution at  $-50^{\circ}$  to  $-70^{\circ}$ C to give ClOF<sub>2</sub><sup>+</sup>BF<sub>4</sub><sup>-</sup>. However

to our knowledge, no further details have been published on this process.

The third problem case for fluorine–oxygen exchange reactions is the conversion of  $IF_7$  to  $IOF_5$ . By analogy to the  $NO_3^-/IF_7$  reactions [14], only the deoxygenated  $IF_6^-$  salt was formed when  $KN(NO_2)_2$  was treated with an excess of liquid  $IF_7$  at room temperature.

$$3IF_7 + KN(NO_2)_2 \rightarrow KIF_6 \cdot 2IF_7 + FNO_2 + N_2O + 0.5O_2$$

In addition to this deoxygenation reaction, about half of the KN(NO<sub>2</sub>)<sub>2</sub> starting material decomposed under the above conditions according to:

$$KN(NO_2)_2 \rightarrow KNO_3 + N_2O$$

Hence, neither  $N(NO_2)_2^-$  nor  $NO_3^-$  is suitable for the conversion of IF<sub>7</sub> to IOF<sub>5</sub> or IOF<sub>6</sub><sup>-</sup>.

Although the desired conversion of IF<sub>7</sub> to IOF<sub>5</sub> was not achieved, an interesting observation of a stable and previously unknown adduct having the composition KIF<sub>6</sub>·2IF<sub>7</sub> was made. This new compound is a white solid which is stable at room temperature but slowly loses IF<sub>7</sub> in a dynamic vacuum at 100°C and IF<sub>5</sub> between 180 and 240°C. Its vibrational spectra (Raman: 647(10), 628(1.5), 594(0.1), 560(4), 543(0.8), 528(1), 501(0.1), 380 (0.4), 350(0.4), 290-240(0.4, br); infrared: 630s, 550vs br, 401w, 390w, 386mw) resembled in their general appearance those of the IF<sub>6</sub> and IF<sub>6</sub> · 2IF<sub>5</sub> anions [5] but with different frequencies and intensities. It, therefore, appears likely that the  $(IF_6 \cdot 2IF_7)$ adduct has a polyanion structure similar to those found for  $(IF_6 \cdot 2IF_5) = [9]$  and  $(XeOF_5 \cdot 2XeOF_4) = [15]$  in which a fluoride ion is shared by three IF<sub>5</sub> or XeOF<sub>4</sub> molecules, respectively. The formation and identity of the KIF<sub>6</sub>·2IF<sub>7</sub> adduct was confirmed in a separate experiment by treating a sample of KIF<sub>6</sub> with a large excess of liquid IF<sub>7</sub> at room temperature for 12 h. After removal of the excess IF<sub>7</sub> in a dynamic vacuum at 25°C, a white product was obtained which exhibited the same KIF<sub>6</sub>·2IF<sub>7</sub> composition and vibrational spectra. Vacuum pyrolysis of the KIF<sub>6</sub>·2IF<sub>7</sub> adduct in the 100–120°C range resulted in IF<sub>7</sub> removal and produced a new compound which is stable over a relatively wide composition range. It exhibits relatively simple vibrational spectra (Raman: 569(10), 499(3), 470(4); infrared: 574s, 500vs

br, 460sh, 428vs br) which cannot be assigned to any presently known iodine fluoride anion. Based on its relatively low frequencies and its loss of IF<sub>5</sub> on vacuum pyrolysis at about 200°C, it is assigned to the novel IF<sub>7</sub><sup>2-1</sup> anion, whose positive identification and characterization will be published elsewhere.

## Acknowledgements

The work at the Air Force Research Laboratory is financially supported by the Propulsion Directorate of the US Air Force and that at USC by the National Science Foundation. The authors are grateful to Prof. G.A Olah and Dr. S. Rodgers for their support and stimulating discussions.

#### References

- K.O. Christe, W.W. Wilson, C.J. Schack, in: G.A. Olah, R.D. Chambers, G.K.S. Prakash (Eds.), Synthetic Fluorine Chemistry, Wiley, New York, 1992, p. 31.
- [2] K.O. Christe, W.W. Wilson, M.A. Petrie, H.H. Michels, J.C. Bottaro, R. Gilardi, Inorg. Chem. 35 (1996) 5068.
- [3] D. Pilipovich, W. Maya, E.A. Lawton, H.F. Bauer, D.F. Sheehan, N.N. Ogimachi, R.D. Wilson, F.C. Gunderloy, V.E. Bedvell, Inorg. Chem. 6 (1967) 1918.
- [4] C.J. Schack, D. Pilipovich, S.N. Cohz, D.F. Sheehan, J. Phys. Chem. 72 (1968) 4697.
- [5] K.O. Christe, Inorg. Chem. 11 (1972) 1215.
- [6] K.O. Christe, R.D. Wilson, C.J. Schack, Inorg. Synth. 24 (1986) 3.
- [7] W.W. Wilson, K.O. Christe, Inorg. Chem. 26 (1987) 916.
- [8] K.O. Christe, W.W. Wilson, Inorg. Chem. 28 (1989) 3275
- [9] A.R. Mahjoub, A. Hoser, J. Fuchs, K. Seppelt, Angew. Chem., Int. Ed. Engl. 28 (1989) 1526.
- [10] K.O. Christe, W.W. Wilson, R.D. Wilson, Inorg. Chem. 28 (1989) 675
- [11] K.O. Christe, Inorg. Chem. 11 (1972) 1220.
- [12] K.O. Christe, C.J. Schack, Adv. Inorg. Chem. Radiochem. 18 (1976)
- [13] S.V. Krasulin, S.N. Spirin, V.B. Sokolov, B.B. Chaivanov, Paper C16 presented at the 10th Int. Symp. on Fluorine Chemistry, Padova, Italy, September 20–25, 1992, for an abstract see J. Fluorine Chem., 58, 1958, 244.
- [14] K.O. Christe, W.W. Wilson, R.D. Wilson, Inorg. Chem. 28 (1989) 904
- [15] J.H. Holloway, V. Kaucic, D. Martin-Rovet, D.R. Russell, G.J. Schrobilgen, H. Selig, Inorg. Chem. 24 (1985) 678.